896 research outputs found

    Family structures

    Get PDF

    Working in partnership through early support: distance learning text: family structures (book chapter)

    Get PDF
    This is a chapter from the distance learning text for the 'Working in Partnership through Early Support' accredited training programme. "The Early Support family pack and accompanying Early Support professional guidance (Department for Education and Skills (DfES), 2004a) are set in a clear framework of service delivery and family interaction. With Together from the Start (DfES/Department of Health (DoH), 2003), they advocate ā€œflexible, family-centred support that is competent, compassionate, comprehensive, continuous, well-coordinated and culturally sensitiveā€. However, without first investigating how individual families work together, professionals cannot begin to deliver a service which can respond to the changing needs of those families. This chapter seeks to involve readers in considering family characteristics and their own ethos of responsive and inclusive practice." - Page 2

    The importance of understanding computer analyses in civil engineering

    Get PDF
    Sophisticated computer modelling systems are widely used in civil engineering analysis. This paper takes examples from structural engineering, environmental engineering, flood management and geotechnical engineering to illustrate the need for civil engineers to be competent in the use of computer tools. An understanding of a model's scientific basis, appropriateness, numerical limitations, validation, verification and propagation of uncertainty is required before applying its results. A review of education and training is also suggested to ensure engineers are competent at using computer modelling systems, particularly in the context of risk management. 1. Introductio

    Distorted Grids as a Spatial Label and Metric

    Get PDF
    Grid cells have been proposed to encode both the self-location of an animal and the relative position of locations within an environment. We reassess the validity of these roles in light of recent evidence demonstrating grid patterns to be less temporally and spatially stable than previously thought

    Grid Cells Form a Global Representation of Connected Environments.

    Get PDF
    The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such asĀ boundaries can distort [9-11] and fragment [12] gridĀ patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation

    Modulating medial septal cholinergic activity reduces medial entorhinal theta frequency without affecting speed or grid coding

    Get PDF
    Medial septal inputs to the hippocampal system are crucial for aspects of temporal and spatial processing, such as theta oscillations and grid cell firing. However, the precise contributions of the medial septumā€™s cholinergic neurones to these functions remain unknown. Here, we recorded neuronal firing and local field potentials from the medial entorhinal cortex of freely foraging mice, while modulating the excitability of medial septal cholinergic neurones. Alteration of cholinergic activity produced a reduction in the frequency of theta oscillations, without affecting the slope of the non-linear theta frequency vs running speed relationship observed. Modifying septal cholinergic tone in this way also led mice to exhibit behaviours associated with novelty or anxiety. However, grid cell firing patterns were unaffected, concordant with an absence of change in the slopes of the theta frequency and firing rate speed signals thought to be used by grid cells

    Task Demands Predict a Dynamic Switch in the Content of Awake Hippocampal Replay

    Get PDF
    Reactivation of hippocampal place cell sequences during behavioral immobility and rest has been linked with both memory consolidation and navigational planning. Yet it remains to be investigated whether these functions are temporally segregated, occurring during different behavioral states. During a self-paced spatial task, awake hippocampal replay occurring either immediately before movement toward a reward location or just after arrival at a reward location preferentially involved cells consistent with the current trajectory. In contrast, during periods of extended immobility, no such biases were evident. Notably, the occurrence of task-focused reactivations predicted the accuracy of subsequent spatial decisions. Additionally, during immobility, but not periods preceding or succeeding movement, grid cells in deep layers of the entorhinal cortex replayed coherently with the hippocampus. Thus, hippocampal reactivations dynamically and abruptly switch between operational modes in response to task demands, plausibly moving from a state favoring navigational planning to one geared toward memory consolidation

    Prediction of kinetic product ratios: investigation of a dynamically controlled case

    Get PDF
    Of the various factors influencing kinetically controlled product ratios, the role of nonstatistical dynamics is arguably the least well understood. In this paper, reactions were chosen in which dynamics played a dominant role in product selection, by design. Specifically, the reactions studied were the ring openings of cyclopropylidene to allene and tetramethylcyclopropylidene to tetramethylallene (2,4-dimethylpenta-2,3-diene). Both reactions have intrinsic reaction coordinates that bifurcate symmetrically, leading to products that are enantiomeric once the atoms are uniquely labeled. The question addressed in the study was whether the outcomesā”€that is, which product well on the potential energy surface was selectedā”€could be predicted from their initial conditions for individual trajectories in quasiclassical dynamics simulations. Hybrid potentials were developed based on cooperative interaction between molecular mechanics and artificial neural networks, trained against data from electronic structure calculations. These potentials allowed simulations of both gas-phase and condensed-phase reactions. The outcome was that, for both reactions, prediction of initial selection of product wells could be made with >95% success from initial conditions of the trajectories in the gas phase. However, when trajectories were run for longer, looking for ā€œfinalā€ products for each trajectory, the predictability dropped off dramatically. In the gas-phase simulations, this drop off was caused by trajectories hopping between product wells on the potential energy surface. That behavior could be suppressed in condensed phases, but then new uncertainty was introduced because the intermolecular interactions between solute and bath, necessary to permit intermolecular energy transfer and cooling of the hot initial products, often led to perturbations of the initial directions of trajectories on the potential energy surface. It would consequently appear that a general ability to predict outcomes for reactions in which nonstatistical dynamics dominate remains a challenge even in the age of sophisticated machine-learning capabilities

    The Study of Reactive Intermediates in Condensed Phases

    Get PDF
    Novel experimental techniques and computational methods have provided new insight into the behavior of reactive intermediates in solution. The results of these studies show that some of the earlier ideas about how reactive intermediates ought to behave in solution were incomplete or even incorrect. This Perspective summarizes the new experimental and computational methods and draws attention to the shortcomings that their application has brought to light in previous models. Key areas needing further research are highlighted

    Meso-1, 2-Bis (Methylazo)-1, 2-Diphenylethane

    Get PDF
    The title compound, meso-1,2-bis(methyldiazenyl)-1,2-diphenylethane, C16H18N4, is arranged in a disordered manner around an inversion point. The Nā€”N atom distances in the azo group of 1.192ā€…(8) and 1.195ā€…(8)ā€…Ć…, and the Cā€”C atom distances in the ethylene moiety at 1.512ā€…(8) and 1.503ā€…(8)ā€…Ć… in the two models [refined to 51.7ā€…(6) and 48.3ā€…(6)% occupancies] were not significantly different
    • ā€¦
    corecore